ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of the Declaration	Aspen Yapı ve Zemin Sistemleri Sanayi ve Ticaret A.Ş.
Programme holder	Institut Bauen und Umwelt e.V. (IBU)
Publisher	Institut Bauen und Umwelt e.V. (IBU)
Declaration number	EPD-ASP-20160110-CAC1-EN
Issue date	14/09/2016
Valid to	13/09/2021

Targa Raised Access Flooring Systems

www.bau-umwelt.com / https://epd-online.com

General Information

Aspen Yapı ve Zemin Sistemleri Sanayi ve Ticaret A.Ş.

Programme holder

IBU - Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany

Declaration number

EPD-ASP-20160110-CAC1-EN

This Declaration is based on the Product Category Rules: System floors, 11.2014 (PCR tested and approved by the SVR)

Issue date

14/09/2016

Valid to

13/09/2021

Wiemanjes

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

Mann

Dr. Burkhart Lehmann (Managing Director IBU)

Product

Product description

Targa Raised Access Flooring Systems produced by Aspen have been designed to provide the space required for data, power, air conditioning, fire and security infrastructures that have become a necessity for all commercial spaces.

Targa Raised Access Flooring Systems enable a fast and cost-free intervention to the space formed under finishing level with their modular structure and thus render the space functional. It consists of 60 x 60 cm panels freely laying on pedestals, stringers and braces which form the substructure. Panel core can be chipboard or calcium sulfate according to project requirements.

Application

In general, raised floor installation areas are offices, IT rooms, public, commercial and private buildings in order to create cavities/installation space.

Technical Data

Each model of raised access flooring systems has its own technical data.

Targa

Owner of the Declaration

Aspen Yapı ve Zemin Sistemleri Sanayi ve Ticaret A.Ş. Leylak Sokak Murat İş Merkezi B Blok 3/14

34387 Mecidiyeköy / İstanbul

Declared product / Declared unit

Targa / 1 m2

Scope:

Within this study a life cycle analysis (LCA) according to /ISO 14040/44/ is performed for Targa raised system floor manufactured by Aspen Yapı ve Zemin Sistemleri Sanayi ve Ticaret A.Ş at the production plant in Sakarya, Turkey. The LCA is based on the data declared by the manufacturer. The EPD for Targa raised system floor is an EPD which represents the cradle-to-gate life cycle analysis of the Targa product. The declaration refers to an average product from one plant of one manufacturer. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The CEN Norm /EN 15804/ serves as the core PCR Independent verification of the declaration

according to /ISO 14025/

internally x externally

Prof. Dr. Birgit Grahl (Independent verifier appointed by SVR)

Constructional data

Name	Value	Unit
System construction (total, FF)	up to 1500	mm
Substructure (from - to)	30 - 1500	mm
Grammage / system weight	20 - 50	kg/m ²
Density of the base course	600 - 1600	kg/m³
Break load Statics (/EN 12825/ / /EN 13213/)	min 4000	Ν
Point load Statics (/EN 12825/ / /EN 13213/)	min 2	kN
Deflection	0 - 4	mm
Fire protection (/EN 13501/DIN 4102/) building material class	B/C	-
Fire protection (/EN 13501/DIN 4102/) Fire resistance	B/C	-
Electrostatics (/DIN EN 1081/)	1000000 - 10000000 000	Ω
Working load	1.8 - 3.2	kN
Maximum load	>= 4	kN
Safety factor	2-3	
Panel load class	1-2	

Panel deflection class	A-C	
Panel dimension class	1	

Base materials / Ancillary materials

ASPEN Targa Raised Access Flooring Systems are primarily made of particle board, steel, PVC and other auxiliary substances. Main raw materials as mass percentage are;

Name	Value	Unit
Chipboard	60	%
Steel	30	%
PVC	5	%
Ancillary Substances	5	%

LCA: Calculation rules

Declared Unit

The declared unit is 1 m2 of Targa raised system floor. The average mass of the product is approximately 63 kg. According to the data from the year 2015 of the manufacturer, of 63 kg of mass of the product produced in 2015, 60% is particleboard, 30% is steel sheet, 4% is PVC, 2% is rubber, 1% is glue, and only 0.82% is calcium sulfate. The classification of the declaration is 1c, which is *declaration of an average product from one plant of one manufacturer*, based on PCR-A Chapter 5.2.

The average breakdown of the input materials, i.e. raw materials, energy, and water, is based on the normalized percentages of the two alternatives, namely particleboard and calcium sulfate, and is given in a range in the table below. According to this, for the year 2015, 98.6% and 1.4% of the input materials are used by the particleboard and calcium sulfate options, respectively.

Name of component sulfate	Particleboard	Calcium					
Raw materials (Mkg)	2.958-3.944	0.42-0.56					
Energy (TkWh)	157.76-162.69	2.24–2.31					
Water (TL)	78.88–83.81	1.12–1.19					
Note: Mkg = million kilograms, TkWh = tnousand							

kilowatt.hours, ML = thousand liters

Declared unit

Name	Value	Unit
Declared unit	1	m²
Grammage (incl. subconstruction)	63	kg/m ²

Reference service life

According to /EN 15084/, the reference service life (RSL) shall only be declared in the EPDs which cover the entire life cycle of a product. The modules declared in this EPD are the production stage information modules from A1 to A3. However, based on the market feedback and the fact that the Targa products which were used in the projects that were carried out 20 years ago have still been well functioning, it can be noted that, unless there is inconformity in the working conditions and maintenance methods, Targa products are expected to be usable for more than 20 years without losing stability and functional properties.

Conversion factor to 1 kg	0.0158	-

System boundary

The type of the EPD: cradle-to-gate

The system boundary includes the production of Targa raised system floor from the extraction of raw materials to the production of finished packaged products at the factory gate - cradle-to-gate.

In this study, the product stage information modules A1, A2, and A3 are considered. These modules include extraction and processing of raw materials, A1; transport of the raw materials to the manufacturer, A2; and manufacturing, including the packaging of the product, A3. As stated by PCR A version 1.5, a potential release of carbon in C4 is to be declared. Therefore, assuming that 90% of particleboard is composed of wood, with the carbon content of 52%, the potential CO2 emission in C4 can be calculated as to be 65.08 kg CO2-equiv., which is caused by the use of wood in particleboard part of the product. The CO2 sequestered in the containerboard used in the packaging has not been included given the negligible mass of the material. The results of the analysis in terms of the mass contributions of all processes to global warming potential are also given in the table below.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

LCA: Scenarios and additional technical information

The modules A4, A5, B1, B2, B3, B4, B5, Reference Service Life (RSL), B6, B7, and C1-C4 are neither considered nor declared in this study.

Of the weight of the Targa raised system floor product, 1% comprises of the materials used in the packaging of the product. These materials are wooden pallets and cardboard boxes, in which the product is placed. The weight of the pallets is slightly over then 0.10 kg per m2 of product, whereas of cardboard box is slightly less than 0.30 kg per m2 of product.

Tintegra®

LCA: Results

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)																
PROE	OUCT S	TAGE	CONST ON PRI ST/	INSTRUCTI I PROCESS USE STAGE END OF LII STAGE					FE STAG	ЭЕ	BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES					
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	Х	MND
RESU	ILTS (OF TH	E LCA	- EN	VIRON	MENT	AL IM	PACT	: Targ	a Ceili	ng sys	stem /	1 m²			·
			Param	eter				Unit			A1-A3				C4	L .
		Glob	oal warmii	na potenti	al		[k	a CO-Ea	L]		8.62E+0)	-		6.51	=+1
	Depletio	n potenti	al of the s	tratosphe	ric ozone	layer	[kg	CFC11-E	q.]		3.77E-9				IN)
	Ac	cidification	n potentia	l of land a	nd water		[k	$[kg SO_2 Eq.]$ 2.95E-1					IND			
Formati	on noter	Eut ntial of tro	ropnicatio	n potentia ozone n	al hotochem	nical oxida	ints [kg	$[kg (PO_4)^\circ - Eq.]$ 3.40E-2 [kg ethene-Eg.] 4.24E-2								
Tonnau	Abiotic	depletion	potential	for non-fc	ssil resou	Irces		[kg Sb-Eq.] 3.65E-3					IND			
	Abiot	ic depleti	on potenti	al for foss	il resouro	es		[MJ] 1.02E+3						IND		
RESU	ILTS	OF TH	IE LCA	A - RE	SOUR	CE US	E: Tai	ga Ce	iling s	ystem	<mark> / 1 m</mark> ²	2				
			Para	neter				Unit		A	1 -A 3				C4	
	Ren	iewable p	orimary er	nergy as e	energy ca	rrier		[MJ]		4.4	13E+2			IND		
Re	newable	e primary	energy re	sources	as materia	al utilizatio	n	[MJ] 6.59E+2				IND				
	Total u	use of rer	newable p	rimary en	ergy reso	urces		[MJ] 1.10E+3								
	Non-rer	ewable r	primary er	energy as herrov as r	naterial ut	ilization		[MJ] 5.17E+1								
-	Total use	e of non-r	enewable	e primarv	enerav re	sources		[MJ] 1.13E+3				IND				
		Use	e of secon	idary mate	erial			[kg] 0.00E+0					IND			
		Use of I	renewable	e seconda	ary fuels			[MJ] 0.00E+0					IND			
	L	Jse of no	n-renewa	ble secor	idary fuels	6		[MJ] 0.00E+0 IN								
RESU						FI OW	IS AN		STE C	ATEG		•				
Targa	Ceili	na sv	stem /	1 m ²												
Parameter Unit A1-A3 C4																
Hazardous waste disposed								-	IND							
Non-hazardous waste disposed				[kg]	1.50E+0			IND								
Radioactive waste disposed				[kg] 1.77E-2 INI			IND									
Components for re-use				[kg]		0.0	00E+0				IND					
Materials for recycling				[Kg]		0.0	JUE+0									
Exported electrical energy				[MJ]												
		Ex	ported the	ermal ene	rgy			[MJ]	MJ 0.00E+0 IND							
± A	Assuming that the preduct may be incinerated at the and of its life the biggenic CO2 emissions generated															

*Assuming that the product may be incinerated at the end of its life, the biogenic CO2 emissions generated during the incineration is declared in the column C4. Thus, this value of GWP represents the global warming potential <u>including</u> the biogenic carbon from the incineration.

References

GaBi 6

GaBi 6: Software and Database for Life Cycle Engineering, IKP [Institute for Polymer Testing and Polymer Science] University of Stuttgart and thinkstep AG, Leinfelden-Echterdingen, 2013

GaBi 6 Documentation of Datasets

GaBi 6: Documentation of GaBi6-Datasets for life cycle engineering. LBP University of Stuttgart and thinkstep AG, 2013. http://documentation.gabi-software.com/

IBU 2016

PCR - Part A: Calculation rules for the Life Cycle Assessment and Requirements on the Background

Report, Institut Bauen und Umwelt e.V., www.bauumwelt.com, March 2016

PCR 2014

PCR Guidance-Texts for Building-Related Products and Services from the range of Environmental Product Declarations of Institute Construction and Environment e.V. (IBU), Part B: Requirements on the EPD for System floors, November 2014

EN 15084

EN 15804:2012: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

ISO 14044:2006

DIN EN ISO 14044:2006-10: Environmental management - Life cycle assessment - Requirements and guidelines

EN 12825

EN 12825:2001 - Raised access floors

EN 13213

EN 13213:2001 - Hollow floors

EN 13501

EN 13501-1:2007 - Fire classification of construction products and building elements. Classification using test data from reaction to fire tests

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013/04 www.bau-umwelt.de

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

Institut Bauen und Umwelt e.V.	Publisher Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 3087748- 0 +49 (0)30 3087748- 29 info@bau-umwelt.com www.bau-umwelt.com
Institut Bauen und Umwelt e.V.	Programme holder Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 - 3087748- 0 +49 (0)30 – 3087748 - 29 info@bau-umwelt.com www.bau-umwelt.com
REIMERS + PARTNERS	Author of the Life Cycle Assessment Burak Sen Istiklal Cad Beyoglu Is Merkezi 187/5 34433 Istanbul Turkey	Tel Fax Mail Web	+902122446780 +902122446780 b.sen@reimers-partners.com www.reimerspartners.com
Tintegra®	Owner of the Declaration Aspen Yapi ve Zemin Sistemleri Sanayi ve Ticaret A.S. Leylak Sokak Murat Is Merkezi B Blok 3/14 34387 Mecidiyeköy / Istanbul Turkey	Tel Fax Mail Web	(0212) 318 88 88 (0212) 275 36 84 info@aspen.com.tr http://www.aspen.com.tr/